√1 1√1
نویسندگان
چکیده
This equation becomes Wallis’ product when p = 0 and Vieta’s formula as p → ∞. It is surprising that such a connection between the two products was not discovered earlier. The collection [1] contains both original papers of Vieta and Wallis as well as other fundamental papers in the history of π. Indeed, there are many good historical sources on π. The text by P. Eymard and J. P. Lafon [6] is an excellent place to start. Wallis’ formula (1.1) is equivalent to
منابع مشابه
DIGITAL EXCLUSION AMEND.indd
0 0 1 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1...
متن کاملConditional and unconditional infectiousness effects in vaccine trials.
[ ] [ ] ( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ] ( ), 1 ) 1 ( Pr 1 ) 0 ( , 1 ) 1 ( | ) 1 , ( E 0 ) 0 ( , 0 ) 1 ( Pr 0 ) 0 ( , 0 ) 1 ( | ) 0 , ( E 1 ) 0 ( , 0 ) 1 ( Pr 1 ) 0 ( , 0 ) 1 ( | ) 0 , ( E 1 ) 0 ( , 1 ) 1 ( Pr 1 ) 0 ( , 1 ) 1 ( | ) 1 , ( E 0 ) 0 ( , 0 ) 1 ( Pr 0 ) 0 ( , 0 ) 1 ( | )) 1 ( , ( E 1 ) 0 ( , 0 ) 1 ( Pr 1 ) 0 ( , 0 ) 1 ( | )) 1 ( , ( E 1 ) 0 ( , 1 ) 1 ( Pr 1 ) 0...
متن کاملComputational Appendix: Hamilton Decompositions of 6-regular Cayley Graphs on Even Abelian Groups with Involution-free Connection Sets
Z2 ⊕ Z12 {(1, 4), (1, 5), (0, 3)}, {(1, 3), (1, 4), (0, 3)}, {(0, 1), (0, 2), (1, 1)}, {(1, 3), (0, 4), (1, 2)}, {(1, 3), (1, 5), (0, 3)}, {(0, 4), (0, 5), (1, 2)}, {(0, 2), (1, 5), (1, 2)}, {(1, 3), (0, 1), (1, 5)}, {(0, 1), (0, 3), (1, 2)}, {(1, 3), (0, 1), (0, 4)}, {(0, 2), (0, 3), (1, 2)}, {(1, 4), (1, 1), (1, 2)}, {(1, 4), (1, 5), (0, 5)}, {(1, 3), (0, 1), (0, 5)}, {(0, 2), (0, 3), (1, 1)}...
متن کاملGeneralized Gorshkov-Wirsing Polynomials and the Integer Chebyshev Problem
Interval LLL SIMPLEX HS Amoroso Lower # CP [-1, 1] 1/1.5314 1/1.5334 1/1.4772 1/1.4520 1/1.5417 8 [-1/2, 1/2] 1/2.3559 1/2.3619 1/2.1822 1/1.4520 1/2.3768 9 [-1/3, 1/3] 1/3.2522 1/3.2617 1/3.0000 1/1.3887 1/3.2842 7 [-2/3, 2/3] 1/1.8820 1/1.8883 1/1.7237 1/1.3887 1/1.9845 5 [-1/4, 1/4] 1/4.1921 1/4.2025 1/4.0000 1/1.1097 1/4.2260 6 [-3/4, 3/4] 1/1.7897 1/1.7935 1/1.7237 1/1.1097 1/1.9653 3 [-1/...
متن کامل4.3 Modiied Variants and Weaknesses 4 the Attack on Lucifer 3 Conditional Characteristics
Round output diierence input diierence p icb key fraction P = (f7g; 0) 1 A = 0 a = 0 1 1 2 B = f45g b = f7g p = 1=8 0 1/2 3 C = f6g c = f45g p = 1=8 1 1/2 4 f45g f6; 7g p = 1=8 0 1/2 5 0 0 1 1 6 f45g f6; 7g p = 1=8 0 1/2 7 f6g f45g p = 1=8 1 1/2 8 f45g f7g p = 1=8 0 1/2 9 0 0 1 1 8 f39g f7g p = 1=8 1 1/2 9 f7g f39g p = 1=8 1 1/2 T = (0; f39g) 17 ent fractions of the key space. Round output diie...
متن کاملAnalytic Solutions for a Functional Differential Equation Related to a Traffic Flow Model
and Applied Analysis 3 Proof. If we let h s ∑∞ n 1 ans n and substituting into 1.3 , we have α2 ∞ ∑ n 0 n 1 λ − 1 an 1s 2α ∞ ∑ n 1 ( n−1 ∑ i 0 i 1 ( λn−i − 1 )( λ − 1 ) an−iai 1 ) s ∞ ∑ n 2 ( n−2 ∑ i 0 n−i−1 ∑ k 1 i 1 ( λn−k−i − 1 )( λ − 1 )( λ − 1 ) an−k−iakai 1 ) s β ∞ ∑ n 1 ( n−1 ∑ i 0 i 1 ( λn−i − 1 )2 an−iai 1 ) s. 2.3 Comparing coefficients we obtain α2 ( λ0 − 1 ) a1 0, 2.4 α2 n 1 λ − 1 a...
متن کامل